Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
PLoS Comput Biol ; 20(5): e1012087, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701082

ABSTRACT

Collective dynamics emerge from individual-level decisions, yet we still poorly understand the link between individual-level decision-making processes and collective outcomes in realistic physical systems. Using collective foraging to study the key trade-off between personal and social information use, we present a mechanistic, spatially-explicit agent-based model that combines individual-level evidence accumulation of personal and (visual) social cues with particle-based movement. Under idealized conditions without physical constraints, our mechanistic framework reproduces findings from established probabilistic models, but explains how individual-level decision processes generate collective outcomes in a bottom-up way. In clustered environments, groups performed best if agents reacted strongly to social information, while in uniform environments, individualistic search was most beneficial. Incorporating different real-world physical and perceptual constraints profoundly shaped collective performance, and could even buffer maladaptive herding by facilitating self-organized exploration. Our study uncovers the mechanisms linking individual cognition to collective outcomes in human and animal foraging and paves the way for decentralized robotic applications.

2.
Proc Natl Acad Sci U S A ; 121(18): e2309733121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38662546

ABSTRACT

Animals moving together in groups are believed to interact among each other with effective social forces, such as attraction, repulsion, and alignment. Such forces can be inferred using "force maps," i.e., by analyzing the dependency of the acceleration of a focal individual on relevant variables. Here, we introduce a force map technique suitable for the analysis of the alignment forces experienced by individuals. After validating it using an agent-based model, we apply the force map to experimental data of schooling fish. We observe signatures of an effective alignment force with faster neighbors and an unexpected antialignment with slower neighbors. Instead of an explicit antialignment behavior, we suggest that the observed pattern is the result of a selective attention mechanism, where fish pay less attention to slower neighbors. This mechanism implies the existence of temporal leadership interactions based on relative speeds between neighbors. We present support for this hypothesis both from agent-based modeling as well as from exploring leader-follower relationships in the experimental data.


Subject(s)
Social Behavior , Animals , Behavior, Animal/physiology , Leadership , Fishes/physiology , Models, Biological , Social Interaction , Swimming
3.
Nat Commun ; 15(1): 2683, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538580

ABSTRACT

Collective dynamics emerge from countless individual decisions. Yet, we poorly understand the processes governing dynamically-interacting individuals in human collectives under realistic conditions. We present a naturalistic immersive-reality experiment where groups of participants searched for rewards in different environments, studying how individuals weigh personal and social information and how this shapes individual and collective outcomes. Capturing high-resolution visual-spatial data, behavioral analyses revealed individual-level gains-but group-level losses-of high social information use and spatial proximity in environments with concentrated (vs. distributed) resources. Incentivizing participants at the group (vs. individual) level facilitated adaptation to concentrated environments, buffering apparently excessive scrounging. To infer discrete choices from unconstrained interactions and uncover the underlying decision mechanisms, we developed an unsupervised Social Hidden Markov Decision model. Computational results showed that participants were more sensitive to social information in concentrated environments frequently switching to a social relocation state where they approach successful group members. Group-level incentives reduced participants' overall responsiveness to social information and promoted higher selectivity over time. Finally, mapping group-level spatio-temporal dynamics through time-lagged regressions revealed a collective exploration-exploitation trade-off across different timescales. Our study unravels the processes linking individual-level strategies to emerging collective dynamics, and provides tools to investigate decision-making in freely-interacting collectives.


Subject(s)
Motivation , Social Behavior , Humans , Decision Making
4.
Perspect Psychol Sci ; 19(2): 538-551, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37671891

ABSTRACT

Collective dynamics play a key role in everyday decision-making. Whether social influence promotes the spread of accurate information and ultimately results in adaptive behavior or leads to false information cascades and maladaptive social contagion strongly depends on the cognitive mechanisms underlying social interactions. Here we argue that cognitive modeling, in tandem with experiments that allow collective dynamics to emerge, can mechanistically link cognitive processes at the individual and collective levels. We illustrate the strength of this cognitive computational approach with two highly successful cognitive models that have been applied to interactive group experiments: evidence-accumulation and reinforcement-learning models. We show how these approaches make it possible to simultaneously study (a) how individual cognition drives social systems, (b) how social systems drive individual cognition, and (c) the dynamic feedback processes between the two layers.


Subject(s)
Decision Making , Social Behavior , Humans , Cognition , Learning , Reinforcement, Psychology
5.
Dalton Trans ; 53(1): 56-64, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38078478

ABSTRACT

An effective synthetic protocol towards the oxidation of sumanene-ferrocene conjugates bearing one to four ferrocene moieties has been established. The oxidation protocol was based on the transformation of FeII from ferrocene to FeIII-containing ferrocenium cations by means of the treatment of the title organometallic buckybowls with a mild oxidant. Successful isolation of these ferrocenium-tethered sumanene derivatives 5-7 gave rise to the biological evaluation of the first, buckybowl-based anticancer agents, as elucidated by in vitro assays with human breast adenocarcinoma cells (MDA-MB-231) and embryotoxicity trials in zebrafish embryos supported with in silico toxicology studies. The designed ferrocenium-tethered sumanene derivatives featured attractive properties in terms of their use in cancer treatments in humans. The tetra-ferrocenium sumanene derivative 7 featured especially beneficial biological features, elucidated by low (<40% for 10 µM) viabilities of MDA-MB-231 cancer cells together with a 1.4-1.7-fold higher viability of normal cells (human mammary fibroblasts, HMF) for respective concentrations. Compound 7 featured significant cytotoxicity against cancer cells thanks to the presence of sumanene and ferrocenium moieties; the latter motif also provided the selectivity of anticancer action. The biological properties of 7 were also improved in comparison with those of native building blocks, which suggested the effects of the presence of the sumanene skeleton towards the anticancer action of this molecule. Ferrocenium-tethered sumanene derivatives exhibited potential towards the generation of reactive oxygen species (ROS), responsible for biological damage to the cancer cells, with the most efficient generation of the tetra-ferrocenium sumanene derivative 7. Derivative 7 also did not show any embryotoxicity in zebrafish embryos at the tested concentrations, which supports its potential as an effective and cancer-specific anticancer agent. In silico computational analysis also showed no chromosomal aberrations and no mutation with AMES tests for the compound 7 tested with and without microsomal rat liver fractions, which supports its further use as a potent drug candidate in detailed anticancer studies.


Subject(s)
Antineoplastic Agents , Zebrafish , Humans , Animals , Metallocenes/pharmacology , Ferric Compounds , Ferrous Compounds/pharmacology , Antineoplastic Agents/pharmacology
6.
Phys Biol ; 20(4)2023 06 13.
Article in English | MEDLINE | ID: mdl-37201534

ABSTRACT

In this paper, we reconsider the spin model suggested recently to understand some features of collective decision making among higher organisms (Hartnettet al2016Phys. Rev. Lett.116038701). Within the model, the state of an agentiis described by the pair of variables corresponding to its opinionSi=±1and a biasωitoward any of the opposing values ofSi. Collective decision making is interpreted as an approach to the equilibrium state within the nonlinear voter model subject to a social pressure and a probabilistic algorithm. Here, we push such a physical analogy further and give the statistical physics interpretation of the model, describing it in terms of the Hamiltonian of interaction and looking for the equilibrium state via explicit calculation of its partition function. We show that, depending on the assumptions about the nature of social interactions, two different Hamiltonians can be formulated, which can be solved using different methods. In such an interpretation the temperature serves as a measure of fluctuations, not considered before in the original model. We find exact solutions for the thermodynamics of the model on the complete graph. The general analytical predictions are confirmed using individual-based simulations. The simulations also allow us to study the impact of system size and initial conditions on the collective decision making in finite-sized systems, in particular, with respect to convergence to metastable states.


Subject(s)
Algorithms , Social Interaction , Thermodynamics , Temperature , Decision Making
7.
Proc Natl Acad Sci U S A ; 120(11): e2206163120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36897970

ABSTRACT

How collectives remain coordinated as they grow in size is a fundamental challenge affecting systems ranging from biofilms to governments. This challenge is particularly apparent in multicellular organisms, where coordination among a vast number of cells is vital for coherent animal behavior. However, the earliest multicellular organisms were decentralized, with indeterminate sizes and morphologies, as exemplified by Trichoplax adhaerens, arguably the earliest-diverged and simplest motile animal. We investigated coordination among cells in T. adhaerens by observing the degree of collective order in locomotion across animals of differing sizes and found that larger individuals exhibit increasingly disordered locomotion. We reproduced this effect of size on order through a simulation model of active elastic cellular sheets and demonstrate that this relationship is best recapitulated across all body sizes when the simulation parameters are tuned to a critical point in the parameter space. We quantify the trade-off between increasing size and coordination in a multicellular animal with a decentralized anatomy that shows evidence of criticality and hypothesize as to the implications of this on the evolution hierarchical structures such as nervous systems in larger organisms.


Subject(s)
Placozoa , Animals , Placozoa/physiology , Body Size , Central Nervous System , Biological Evolution
8.
Philos Trans R Soc Lond B Biol Sci ; 378(1874): 20220069, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36802783

ABSTRACT

Collective behaviour is widely accepted to provide a variety of antipredator benefits. Acting collectively requires not only strong coordination among group members, but also the integration of among-individual phenotypic variation. Therefore, groups composed of more than one species offer a unique opportunity to look into the evolution of both mechanistic and functional aspects of collective behaviour. Here, we present data on mixed-species fish shoals that perform collective dives. These repeated dives produce water waves capable of delaying and/or reducing the success of piscivorous bird attacks. The large majority of the fish in these shoals consist of the sulphur molly, Poecilia sulphuraria, but we regularly also found a second species, the widemouth gambusia, Gambusia eurystoma, making these shoals mixed-species aggregations. In a set of laboratory experiments, we found that gambusia were much less inclined to dive after an attack as compared with mollies, which almost always dive, though mollies dived less deep when paired with gambusia that did not dive. By contrast, the behaviour of gambusia was not influenced by the presence of diving mollies. The dampening effect of less responsive gambusia on molly diving behaviour can have strong evolutionary consequences on the overall collective waving behaviour as we expect shoals with a high proportion of unresponsive gambusia to be less effective at producing repeated waves. This article is part of a discussion meeting issue 'Collective behaviour through time'.


Subject(s)
Mass Behavior , Poecilia , Animals , Birds , Predatory Behavior
9.
PLoS Comput Biol ; 18(11): e1010670, 2022 11.
Article in English | MEDLINE | ID: mdl-36409767

ABSTRACT

Levels of sociality in nature vary widely. Some species are solitary; others live in family groups; some form complex multi-family societies. Increased levels of social interaction can allow for the spread of useful innovations and beneficial information, but can also facilitate the spread of harmful contagions, such as infectious diseases. It is natural to assume that these contagion processes shape the evolution of complex social systems, but an explicit account of the dynamics of sociality under selection pressure imposed by contagion remains elusive. We consider a model for the evolution of sociality strategies in the presence of both a beneficial and costly contagion. We study the dynamics of this model at three timescales: using a susceptible-infectious-susceptible (SIS) model to describe contagion spread for given sociality strategies, a replicator equation to study the changing fractions of two different levels of sociality, and an adaptive dynamics approach to study the long-time evolution of the population level of sociality. For a wide range of assumptions about the benefits and costs of infection, we identify a social dilemma: the evolutionarily-stable sociality strategy (ESS) is distinct from the collective optimum-the level of sociality that would be best for all individuals. In particular, the ESS level of social interaction is greater (respectively less) than the social optimum when the good contagion spreads more (respectively less) readily than the bad contagion. Our results shed light on how contagion shapes the evolution of social interaction, but reveals that evolution may not necessarily lead populations to social structures that are good for any or all.


Subject(s)
Social Behavior , Humans
10.
Bioinspir Biomim ; 17(6)2022 10 18.
Article in English | MEDLINE | ID: mdl-36044889

ABSTRACT

The ability of an individual to predict the outcome of the actions of others and to change their own behavior adaptively is called anticipation. There are many examples from mammalian species-including humans-that show anticipatory abilities in a social context, however, it is not clear to what extent fishes can anticipate the actions of their interaction partners or what the underlying mechanisms are for that anticipation. To answer these questions, we let live guppies (Poecilia reticulata) interact repeatedly with an open-loop (noninteractive) biomimetic robot that has previously been shown to be an accepted conspecific. The robot always performed the same zigzag trajectory in the experimental tank that ended in one of the corners, giving the live fish the opportunity to learn both the location of the final destination as well as the specific turning movement of the robot over three consecutive trials. The live fish's reactions were categorized into a global anticipation, which we defined as relative time to reach the robot's final corner, and a local anticipation which was the relative time and location of the live fish's turns relative to robofish turns. As a proxy for global anticipation, we found that live fish in the last trial reached the robot's destination corner significantly earlier than the robot. Overall, more than 50% of all fish arrived at the destination before the robot. This is more than a random walk model would predict and significantly more compared to all other equidistant, yet unvisited, corners. As a proxy for local anticipation, we found fish change their turning behavior in response to the robot over the course of the trials. Initially, the fish would turn after the robot, which was reversed in the end, as they began to turn slightly before the robot in the final trial. Our results indicate that live fish are able to anticipate predictably behaving social partners both in regard to final movement locations as well as movement dynamics. Given that fish have been found to exhibit consistent behavioral differences, anticipation in fish could have evolved as a mechanism to adapt to different social interaction partners.


Subject(s)
Poecilia , Robotics , Humans , Animals , Robotics/methods , Biomimetics , Movement , Poecilia/physiology , Mammals
11.
PLoS Comput Biol ; 18(8): e1010442, 2022 08.
Article in English | MEDLINE | ID: mdl-35984855

ABSTRACT

Individuals continuously have to balance the error costs of alternative decisions. A wealth of research has studied how single individuals navigate this, showing that individuals develop response biases to avoid the more costly error. We, however, know little about the dynamics in groups facing asymmetrical error costs and when social influence amplifies either safe or risky behavior. Here, we investigate this by modeling the decision process and information flow with a drift-diffusion model extended to the social domain. In the model individuals first gather independent personal information; they then enter a social phase in which they can either decide early based on personal information, or wait for additional social information. We combined the model with an evolutionary algorithm to derive adaptive behavior. We find that under asymmetric costs, individuals in large cooperative groups do not develop response biases because such biases amplify at the collective level, triggering false information cascades. Selfish individuals, however, undermine the group's performance for their own benefit by developing higher response biases and waiting for more information. Our results have implications for our understanding of the social dynamics in groups facing asymmetrical errors costs, such as animal groups evading predation or police officers holding a suspect at gunpoint.


Subject(s)
Decision Making , Predatory Behavior , Algorithms , Animals , Decision Making/physiology , Social Behavior
12.
Sci Adv ; 8(25): eabm6385, 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35731883

ABSTRACT

Theoretical physics predicts optimal information processing in living systems near transitions (or pseudo-critical points) in their collective dynamics. However, focusing on potential benefits of proximity to a critical point, such as maximal sensitivity to perturbations and fast dissemination of information, commonly disregards possible costs of criticality in the noisy, dynamic environmental contexts of biological systems. Here, we find that startle cascades in fish schools are subcritical (not maximally responsive to environmental cues) and that distance to criticality decreases when perceived risk increases. Considering individuals' costs related to two detection error types, associated to both true and false alarms, we argue that being subcritical, and modulating distance to criticality, can be understood as managing a trade-off between sensitivity and robustness according to the riskiness and noisiness of the environment. Our work emphasizes the need for an individual-based and context-dependent perspective on criticality and collective information processing and motivates future questions about the evolutionary forces that brought about a particular trade-off.

13.
Am Nat ; 199(4): 480-495, 2022 04.
Article in English | MEDLINE | ID: mdl-35324386

ABSTRACT

AbstractIntensive and size-selective harvesting is an evolutionary driver of life history as well as individual behavioral traits. Yet whether and to what degree harvesting modifies the collective behavior of exploited species are largely unknown. We present a multigeneration harvest selection experiment with zebrafish, Danio rerio, as a model species to understand the effects of size-selective harvesting on shoaling behavior. The experimental system is based on a large-harvested (typical of most wild-capture fisheries targeting larger size classes) and small-harvested (typical of specialized fisheries and gape-limited predators targeting smaller size classes) selection lines. By combining high-resolution tracking of fish behavior with computational agent-based modeling, we show that shoal cohesion changed in the direction expected by a trade-off between individual vigilance and the use of social cues. In particular, we document a decrease of individual vigilance in the small-harvested line, which was linked to an increase in the attention to social cues, favoring more cohesive shoals. Opposing outcomes were found for the large-harvested line, which formed less cohesive shoals. Using the agent-based model, we outline possible consequences of changes in shoaling behavior for both fishing and natural mortality. The changes in shoaling induced by large size-selective harvesting may decrease fishing mortality but increase mortality by natural predators. Our work suggests an insofar overlooked evolutionary mechanism by which size-selective harvesting can affect fishing and natural mortality of exploited fish.


Subject(s)
Hunting , Zebrafish , Animals , Biological Evolution , Fisheries , Phenotype
14.
Sci Rep ; 12(1): 2588, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35173183

ABSTRACT

We investigate the susceptible-infectious-recovered contagion dynamics in a system of self-propelled particles with polar alignment. Using agent-based simulations, we analyze the outbreak process for different combinations of the spatial parameters (alignment strength and Peclet number) and epidemic parameters (infection-lifetime transmissibility and duration of the individual infectious period). We show that the emerging spatial features strongly affect the contagion process. The ordered homogeneous states greatly disfavor infection spreading, due to their limited mixing, only achieving large outbreaks for high values of the individual infectious duration. The disordered homogeneous states also present low contagion capabilities, requiring relatively high values of both epidemic parameters to reach significant spreading. Instead, the inhomogeneous ordered states display high outbreak levels for a broad range of parameters. The formation of bands and clusters in these states favor infection propagation through a combination of processes that develop inside and outside of these structures. Our results highlight the importance of self-organized spatiotemporal features in a variety of contagion processes that can describe epidemics or other propagation dynamics, thus suggesting new approaches for understanding, predicting, and controlling their spreading in a variety of self-organized biological systems, ranging from bacterial swarms to animal groups and human crowds.

15.
Curr Biol ; 32(3): 708-714.e4, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34942081

ABSTRACT

The collective behavior of animals has attracted considerable attention in recent years, with many studies exploring how local interactions between individuals can give rise to global group properties.1-3 The functional aspects of collective behavior are less well studied, especially in the field,4 and relatively few studies have investigated the adaptive benefits of collective behavior in situations where prey are attacked by predators.5,6 This paucity of studies is unsurprising because predator-prey interactions in the field are difficult to observe. Furthermore, the focus in recent studies on predator-prey interactions has been on the collective behavior of the prey7-10 rather than on the behavior of the predator (but see Ioannou et al.11 and Handegard et al.12). Here we present a field study that investigated the anti-predator benefits of waves produced by fish at the water surface when diving down collectively in response to attacks of avian predators. Fish engaged in surface waves that were highly conspicuous, repetitive, and rhythmic involving many thousands of individuals for up to 2 min. Experimentally induced fish waves doubled the time birds waited until their next attack, therefore substantially reducing attack frequency. In one avian predator, capture probability, too, decreased with wave number and birds switched perches in response to wave displays more often than in control treatments, suggesting that they directed their attacks elsewhere. Taken together, these results support an anti-predator function of fish waves. The attack delay could be a result of a confusion effect or a consequence of waves acting as a perception advertisement, which requires further exploration.


Subject(s)
Fishes , Predatory Behavior , Animals , Birds/physiology , Fishes/physiology , Mass Gatherings , Predatory Behavior/physiology
16.
Behav Ecol ; 32(6): 1094-1102, 2021.
Article in English | MEDLINE | ID: mdl-34949958

ABSTRACT

Bird predation poses a strong selection pressure on fish. Since birds must enter the water to catch fish, a combination of visual and mechano-acoustic cues (multimodal) characterize an immediate attack, while single cues (unimodal) may represent less dangerous disturbances. We investigated whether fish could use this information to distinguish between non-threatening and dangerous events and adjust their antipredator response to the perceived level of risk. To do so, we investigated the antipredator behavior of the sulphur molly (Poecilia sulphuraria), a small freshwater fish which is almost exclusively preyed on by piscivorous birds in its endemic sulfide spring habitat. In a field survey, we confirmed that these fish frequently have to distinguish between disturbances stemming from attacking birds (multimodal) and those which pose no (immediate) threat such as bird overflights (unimodal). In a laboratory experiment, we then exposed fish to artificial visual and/or acoustic stimuli presented separately or combined. Sensitivity was high regardless of stimulus type and number (more than 96% of fish initiated diving), but fish dove deeper, faster, and for longer when both stimuli were available simultaneously. Based on the system's high rates of bird activity, we argue that such an unselective dive initiation with subsequent fine-tuning of diving parameters in accordance to cue modality represents an optimal strategy for these fish to save energy necessary to respond to future attacks. Ultimately, our study shows that fish anticipate the imminent risk posed by disturbances linked to bird predation through integrating information from both visual and acoustic cues.

17.
Phys Rev E ; 104(4-1): 044605, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34781565

ABSTRACT

We study a set of models of self-propelled particles that achieve collective motion through similar alignment-based dynamics, considering versions with and without repulsive interactions that do not affect the heading directions. We explore their phase space within a broad range of values of two nondimensional parameters (coupling strength and Peclet number), characterizing their polarization and degree of clustering. The resulting phase diagrams display equivalent, similarly distributed regions for all models with repulsion. The diagrams without repulsion exhibit differences, in particular for high coupling strengths. We compare the boundaries and representative states of all regions, identifying various regimes that had not been previously characterized. We analyze in detail three types of homogeneous polarized states, comparing them to existing theoretical and numerical results by computing their velocity and density correlations, giant number fluctuations, and local order-density coupling. We find that they all deviate in one way or another from the theoretical predictions, attributing these differences either to the remaining inhomogeneities or to finite-size effects. We discuss our results in terms of the generic or specific features of each model, their thermodynamic limit, and the high mixing and low mixing regimes. Our study provides a broad, overarching perspective on the multiple phases and states found in alignment-based self-propelled particle models.

18.
Trends Cogn Sci ; 25(12): 1082-1095, 2021 12.
Article in English | MEDLINE | ID: mdl-34493441

ABSTRACT

Rules form an important part of our everyday lives. Here we explore the role of social influence in rule-breaking. In particular, we identify some of the cognitive mechanisms underlying rule-breaking and propose approaches for how they can be scaled up to the level of groups or crowds to better understand the emergence of collective rule-breaking. Social contagion plays an important role in such processes and different dynamics such as linear or rapid nonlinear spreading can have important consequences for interventions in rule-breaking. A closer integration of cognitive psychology, microsociology and mathematical modelling will be key to a deeper understanding of collective rule-breaking to turn this field of research into a predictive science.


Subject(s)
Models, Theoretical , Humans
19.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: mdl-34155097

ABSTRACT

Collective behavior provides a framework for understanding how the actions and properties of groups emerge from the way individuals generate and share information. In humans, information flows were initially shaped by natural selection yet are increasingly structured by emerging communication technologies. Our larger, more complex social networks now transfer high-fidelity information over vast distances at low cost. The digital age and the rise of social media have accelerated changes to our social systems, with poorly understood functional consequences. This gap in our knowledge represents a principal challenge to scientific progress, democracy, and actions to address global crises. We argue that the study of collective behavior must rise to a "crisis discipline" just as medicine, conservation, and climate science have, with a focus on providing actionable insight to policymakers and regulators for the stewardship of social systems.


Subject(s)
Behavior , Cooperative Behavior , Internationality , Algorithms , Communication , Humans , Social Networking
20.
PLoS Comput Biol ; 17(3): e1008832, 2021 03.
Article in English | MEDLINE | ID: mdl-33720926

ABSTRACT

According to the criticality hypothesis, collective biological systems should operate in a special parameter region, close to so-called critical points, where the collective behavior undergoes a qualitative change between different dynamical regimes. Critical systems exhibit unique properties, which may benefit collective information processing such as maximal responsiveness to external stimuli. Besides neuronal and gene-regulatory networks, recent empirical data suggests that also animal collectives may be examples of self-organized critical systems. However, open questions about self-organization mechanisms in animal groups remain: Evolutionary adaptation towards a group-level optimum (group-level selection), implicitly assumed in the "criticality hypothesis", appears in general not reasonable for fission-fusion groups composed of non-related individuals. Furthermore, previous theoretical work relies on non-spatial models, which ignore potentially important self-organization and spatial sorting effects. Using a generic, spatially-explicit model of schooling prey being attacked by a predator, we show first that schools operating at criticality perform best. However, this is not due to optimal response of the prey to the predator, as suggested by the "criticality hypothesis", but rather due to the spatial structure of the prey school at criticality. Secondly, by investigating individual-level evolution, we show that strong spatial self-sorting effects at the critical point lead to strong selection gradients, and make it an evolutionary unstable state. Our results demonstrate the decisive role of spatio-temporal phenomena in collective behavior, and that individual-level selection is in general not a viable mechanism for self-tuning of unrelated animal groups towards criticality.


Subject(s)
Models, Biological , Predatory Behavior/physiology , Social Behavior , Algorithms , Animals , Biological Evolution , Computational Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...